BAYESIAN ANALYSIS OF A RANDOM LINK FUNCTION IN BINARY RESPONSE REGRESSION by
نویسندگان
چکیده
Binary response regression is a useful technique for analyzing categorical data. Popular binary models use special link functions such as the logit or the probit link. We assume that the inverse link function H is a random member of the class of normal scale mixture cdfs. We propose three di erent models for this random H : (i) H is a nite scale mixture with a Dirichlet distribution prior on the mixing distribution; (ii) H is a general scale mixture, the mixing distribution has a Dirichlet process prior; and (iii) H is a scale mixture of truncated normal distributions with the mixing distribution having a Dirichlet prior. We describe Bayesian analyses of these models using data augmentation and Gibbs sampling. Model diagnostics by cross validation of the conditional predictive distributions are proposed. These analyses are illustrated in two examples. Our proposed models match the performances of Bayesian probit and t link models in the rst example whereas they outperform probit and t link models in the second example.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses
A transition binary logistic model with random coefficients is proposed to model the unemployment statues of household members in two seasons of spring and summer. Data correspond to the labor force survey performed by Statistical Center of Iran in 2006. This model is introduced to take into account two kinds of correlation in the data one due to the longitudinal nature o...
متن کاملBayesian Determination of Sample Size in Longitudinal Studies with Binary Responses Using Random Effects Models
Sample size determination is important in all statistical studies including longitudinal studies. This is usually done by considering a target power to reduce the costs of sampling. Choosing the right sample size using efficient methods, ensures that the researcher achieve goal of the study, by spending the least amount of energy, time and money. In this article, using a method based on simulat...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملBinary Regression With a Misclassified Response Variable in Diabetes Data
Objectives: The categorical data analysis is very important in statistics and medical sciences. When the binary response variable is misclassified, the results of fitting the model will be biased in estimating adjusted odds ratios. The present study aimed to use a method to detect and correct misclassification error in the response variable of Type 2 Diabetes Mellitus (T2DM), applying binary ...
متن کامل